Модуль вектора - Упоминания в других статьях


всего найдено упоминаний этой статьи: 16

информация о статьеСила (физическая величина)
Сила, как векторная величина, характеризуется модулем и направлением. Второй закон Ньютона гласит, что в инерциальных системах отсчета ускорение движения материальной точки совпадает по направлению с приложенной силой; по модулю прямо пропорционально модулю силы и обратно пропорционально массе материальной точки. Или, что эквивалентно, в инерциальных системах отсчета скорость изменения импульса материальной точки равна приложенной силе. Деформация являются следствием возникновения в теле внутренних напряжений.

информация о статьеВектор-функция
Говорят, что вектор-функция (....) имеет предел (....) в точке (....), если (....) (здесь и далее (....) обозначают модуль вектора (....)). Предел вектор-функции имеет обычные свойства:

информация о статьеРадиус-вектор
Длина радиус-вектора, или его модуль, определяет расстояние, на котором точка находится от начала координат, а стрелка указывает направление на эту точку пространства.

информация о статьеОрт

информация о статьеСкорость
Ско́рость (часто обозначается (....), от англ. velocity или фр. vitesse) — векторная величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта. Этим же словом может называться скалярная величина, точнее модуль производной радиус-вектора.

информация о статьеКовариантный метод
2. круговая поляризация волны, если векторы (....) и (....) ортогональны и равны друг другу по абсолютному значению ((....) и (....));

информация о статьеРавноускоренное движение
В общем случае равноускоренным движением называется движение, при котором вектор ускорения (....). Напомним, что это означает постоянство как по модулю, так и по направлению.

информация о статьеУгловая скорость

информация о статьеЕдиничный вектор
Едини́чный ве́ктор или Орт (единичный вектор нормированного векторного пространства) — вектор, норма (длина) которого равна единице выбранного масштаба.


всего найдено цитат на эту статью 16
Проект wiki-linki.ru основан на данных Wikipedia, доступной в соответствии с GNU Free Documentation License.