Классическая механика - Упоминания в других статьях


всего найдено упоминаний этой статьи: 109
информация о статьеПеремещение
Перемещение в классической механике — направленный отрезок, характеризующий изменение положения материальной точки в пространстве. Обладает свойствами вектора, поэтому является векторной величиной. Обладает свойством аддитивности. Длина отрезка — это модуль перемещения, измеряется в метрах (СИ).

информация о статьеОбщая теория относительности
В нерелятивистской механике существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу.

информация о статьеМатематическая физика
Классическая математическая физика развивалась со времён Ньютона параллельно с развитием физики и математики. В конце XVII века было открыто дифференциальное и интегральное исчисление (И. Ньютон, Г. Лейбниц) и сформулированы основные законы классической механики и закон всемирного тяготения (И. Ньютон). В XVIII веке методы математической физики начали формироваться при изучении колебаний струн, стержней, маятников, а также задач, связанных с акустикой и гидродинамикой; закладываются основы аналитической механики (Ж. Даламбер, Л. Эйлер, Д. Бернулли, Ж. Лагранж, К. Гаусс, П. Лаплас). В XIX веке методы математической физики получили новое развитие в связи с задачами теплопроводности, диффузии, теории упругости, оптики, электродинамики, нелинейными волновыми процессами и т. д.; создаются теория потенциала, теория устойчивости движения (Ж. Фурье, С. Пуассон, Л. Больцман, О. Коши, М. В. Остроградский, П. Дирихле, Дж. К. Максвелл, Б. Риман, С. В. Ковалевская, Д. Стокс, Г. Р. Кирхгоф, А. Пуанкаре, А. М. Ляпунов, В. А. Стеклов, Д. Гильберт, Ж. Адамар). В XX веке возникают новые задачи газовой динамики, теории переноса частиц и физики плазмы.

информация о статьеСкобка Пуассона
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.

информация о статьеУравнения Аппеля
В классической механике уравнения Аппеля рассматривают как альтернативную формулировку общих уравнений движения, предложенных Ньютоном. Выписаны Полем Аппелем в 1900

информация о статьеИмпульс
В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорость

информация о статьеКинематика (физика)
где (....) определяется количеством степеней свободы. Так как точка не может быть в нескольких местах одновременно, все функции (....) должны быть однозначными. Так же в классической механике выдвигается требование их дифференцируемости на промежутках. Производные этих функций определяют скорость тела.

информация о статьеВариационные принципы
Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.


информация о статьеЛагранжиан
Уравнения движения, полученные посредством функциональной производной, идентичны обычным уравнениям Эйлера-Лагранжа. Динамические системы, чьи уравнения движения могут быть получены посредством принципа наименьшего действия для удобно выбранной функции Лагранжа, известны как лагранжевы динамические системы. Примеров лагранжевых динамических систем много, начиная с классической версии Стандартной Модели в физике элементарных частиц и заканчивая уравнениями Ньютона в классической механике. Также к ним относятся чисто математические проблемы, такие как уравнения геодезических и проблема Плато.

Проект wiki-linki.ru основан на данных Wikipedia, доступной в соответствии с GNU Free Documentation License.