Синхротронное излучение - Упоминания в других статьях


всего найдено упоминаний этой статьи: 38
информация о статьеГаген-Торн, Владимир Александрович

информация о статьеГаген-Торн, Владимир Александрович
В общей сложности поляриметрические исследования звёзд, туманностей и галактик продлились около 30 лет. Большую роль в этих исследованиях сыграл Владимир Александрович. В основном, он занимался внегалактическими источниками излучения. В ходе этих работ им было показано, что осуществляется несколько механизмов возникновения поляризации излучения внегалактических объектов. Например, в некоторых галактиках поляризация связана с наличием в них тёмной материи. Он впервые в мире выполнил поляризационный обзор ядер сейфертовских галактик (тогда их насчитывалось около 10). При этом было установлено, что их поляризация является следствием синхротронного механизма излучения. Очень важное значение имеет также открытие и исследование Владимиром Александровичем и М. К. Бабаджанянцем переменности поляризации ядер сейфертовских и N-галактик . Первыми объектами, для которых такая переменность была найдена, стали сейфертовские галактики NGC 1275 и NGC 4151 и N-галактика 3C 371.

информация о статьеЧастоты
Электромагнитные волны — γ-излучение (гамма-лучи). Источники: космос, ядерные реакции, радиоактивный распад, синхротронное излучение. Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Зеркал и линз для γ-лучей не существует.

информация о статьеЧастоты
Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое, тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

информация о статьеГалактический центр
Практически в самом центре находится компактный источник нетеплового излучения Стрелец A*, радиус которого составляет 0,0001 парсек, а яркостная температура — около 10 млн. градусов. Радиоизлучение этого источника, по-видимому, имеет синхротронную природу. Временами наблюдаются быстрые изменения потока излучения. Нигде в другом месте Галактики подобных источников излучения не обнаружено, зато подобные источники имеются в ядрах других галактик.

информация о статьеКурчатовский источник синхротронного излучения
Курчатовский Источник Синхротронного Излучения (КИСИ) позволяет получать синхротронное излучение в ИК, УФ и рентгеновской областях спектра, которое используется во всех областях науки: в медицине, в физике, в биологии, в химии и других. Это новый метод изучения и работы с микрообъектами.

информация о статьеГамма-всплеск
В отличие от собственно гамма-всплеска, механизмы послесвечения достаточно хорошо разработаны теоретически. Предполагается, что некоторое событие в центральном объекте инициирует образование ультрарелятивистской разлетающейся оболочки (лоренц-фактор Γ порядка 100). По одной модели, оболочка состоит из барионов (масса её должна составлять 10-8 — 10-6 масс Солнца), по другой — это замагниченное течение, в котором основная энергия переносится вектором Пойнтинга. Весьма существенно, что во многих случаях наблюдается сильная переменность как в самом гамма-излучении (на временах порядка разрешения прибора — миллисекунд), так и в рентгеновских и оптических послесвечениях (вторичные и последующие вспышки, энерговыделение в которых может быть сравнимо с самим всплеском). До некоторой степени это можно объяснить столкновением нескольких ударных волн в оболочке, двигающихся с разными Γ, но в целом это явление представляет серьёзную проблему для любого объяснения механизма работы центральной машины: нужно, чтобы после первого всплеска она могла ещё давать несколько эпизодов энерговыделения, иногда через времена порядка нескольких часов. Послесвечение обеспечивается в основном синхротронным механизмом и, возможно, обратным комптоновским рассеянием. Кривые блеска послесвечений довольно сложны, т.к. они складываются из излучения головной ударной волны, обратной ударной волны, возможного излучения сверхновой и т.д. Иногда на последних стадиях излучения наблюдается излом кривой блеска (от степени -1 до -2), что считается свидетельством в пользу наличия релятивистского джета: излом происходит тогда, когда Γ-фактор падает до значения ~1/θ, где θ — угол раскрытия джета.

информация о статьеГамма-излучение
Гамма-излучение испускается при переходах между возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов лежат в диапазоне от ~1 кэВ до десятков МэВ), при ядерных реакциях (например, при аннигиляции электрона и позитрона, распаде нейтрального пиона и т.д.), а также при отклонении энергичных заряженных частиц в магнитных и электрических полях (см. Синхротронное излучение).

информация о статьеТормозное излучение
Тормозное излучение — электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных поляхускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение».

информация о статьеЭлектромагнитное излучение
Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах а энергия гамма-квантов — больше . В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например, синхротронному или тормозному излучению).


всего найдено цитат на эту статью 38
Проект wiki-linki.ru основан на данных Wikipedia, доступной в соответствии с GNU Free Documentation License.